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Abstract. A method for constructing integrable hierarchies by restricting AKNS flows on
manifolds of finite codimension in the space of independent parameters is provided. Two particular
types of hierachies are characterized: one is given by nonlinear differential equations with
coordinate-dependent coefficients and the other is related t@@obger spectral problems with
energy-dependent potentials of even degree.

1. Introduction

We have recently introduced the notiorhadden hierarchie§l] to describe integrable models
which arise by restricting the KP flows and their reductions to certain submanijfalg®of
finite codimensiomn

= bl(tm+lv tp+2,...) b= bZ(tm+1s bn+2, - ) S bm (tm+1s Tn+2, - - ) (1)

in the space of independent parametets (11, 72, ...) € C*. In [1-3] hidden hierarchies
associated with KdV flows are analysed and they are found to provide integrable models related
to theenergy-dependeigchibdinger spectral problems

2m
Our f = (z””” ) Z”w(x)) f. @)

n=0

Furthermore, it is proved that these hierarchies are connected to the zero manifelds of
functions and, consequently, their corresponding flows in the Grassmannian take place outside
the big cell.

The methods used in [1-3] provide the starting point of a general technique for
deriving integrable models which are based on the consideration of constrained flows on the
Grassmannian. The input of this technique is a wavefundti@n t) of a KP hierarchy or of one
of their reductions and the aim is to characterize submanifblgssuch that the restrictiof,es
of W to M,, satisfies an infinite system of linear problems which determines the dependence
of W 0N the parameter§,,+1, tu+2, . ..). Under these conditions, the compatibility of the
system of linear problems leads to a hidden hierarchy.

In the present paper these methods are applied to study hidden hierarchies arising from
AKNS flows. In this case a fundamental difference arises with respect to our previous
results about the hidden KP hierarchy; namédy, arbitrary M,, the restrictions of AKNS
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wavefunctions satisfy a system of linear probleftiés feature is also considered from
another point of view in recent works, see for instance [4, 5]). Consequently, these restricted
wavefunctions determine hidden hierarchies which, generically, flow in the big cell of the
Grassmannian. Furthermore, their integrable systems turn out to be non-autonomous evolution
equations depending on the arbitrary functiéfp@,,+1, tm+2, ...), i = 1, ..., m which define

M,,. We also derive a different class of hidden AKNS hierarchies which flow outside the
big cell of the Grassmannian. These hierarchies are determined by imposing appropriate
conditions onM,, and, under certain transformations, turn out to describe the integrable
systems associated with the clas&pérgy-depende@chibdinger operators

2m+1
Our f = (sz+2 Yy z”un(x)>f' 3)
n=0

Case (3) withn = 0, which does not correspond to any hidden AKNS hierarchy, it is associated
with the Jaulent—Miodek hierarchy [6], which in turn becomes the standard AKNS hierarchy
under an appropriate transformation.

The existence of the hidden AKNS flows not only outside the big cell but also on the big
cell is a new feature with respect to the previously studied one-component KP hierarchy.

Observe that (2) and (3) represent the whole set of@lihger operators with a potential
function which has a polynomial dependence on the spectral parameter. The corresponding
hierarchies of integrable systems have already been described in [7], but no indications about
methods of solution nor its group-theoretical interpretation from the point of view of Birkhoff
factorization were provided. Our results in the present paper as well as those in [1-3] fill
these gaps. In this sense we notice that there is a direct relationship between the Birkhoff
factorization of a flow and the stratum in the Grassmannian on which it lies [8, 9, 12].

This paper is organized as follows. In section 2 we recall the main ideas about the
Grassmannian and its stratified structure (subsection 2.1), we describe the AKNS flows in
the Grassmannian (subsection 2.2) and the relation between the AKNS wavefunction and the
corresponding tau-functions is established (subsection 2.3). Some details about this fact are
provided in the appendix, at the end of the paper.

In section 3 we describe the hidden AKNS flows in the big cell of the Grassmannian,
the hierarchies of integrable systems associated with them (subsection 3.1), the hidden AKNS
flows outside the big cell and the relation with the hierarchies connected to energy-dependent
Schibdinger operators (subsection 3.2). Finally, we consider reductions of the AKNS flows in
the big cell (subsection 3.3).

2. AKNS flows on the Grassmannian

2.1. The stratification of the Grassmannian

It is well known that a wavefunction of th&-component KP hierarchy leads to a flow in

the Grassmannian which can be formulated in several ways [8-11]. In what follows we will
take advantage of the lexicographic isomorphism [8, 9] for applying the stratification of the
standard one-component KP Grassmannian to study the hidden AKNS flows. To this end let
us introduce the Hilbert spadé := L2(S?, C) of square-integrable complex-valued functions

on S*, with the scalar product being defined by

/ dZ 7
(w', w) = / —w (2) w(z).
st 2miz
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We consider the decomposition &f as the direct sum of the closed subspaieggenerated
byz":n>0andz™" :n > 1, respectively. The Grassmannian(8) is the set of all closed
subspace®’ of H such that

(a) The orthogonal projectiond.: W — H_. are operators of Fredholm and compact types,
respectively.
(b) The virtual dimension oW (i.e. the index ofP,) is zero.

It can be proved that GH) is a Hilbert manifold with a stratified structure. The strata of
Gr(H) can be described by introducing the Sgtof increasing sequences of integers

S = {s0, 51, 52, .. .}

such thats, = n for all sufficiently largen. EachW e Gr(H) determines a sequence of this
type. To see this point recall that an elem@hte H is said to be of finite ordes if it can be
expressed in the forrw = - a,,z", with a, # 0. Thus, due to the fact that the virtual
dimension ofW is zero, it can be shown that the sequence

Sw = {n € Z : W contains an element of ordef
is an element 05y. Then, givenS € Sy we may define the subset of Gf)
Yy ={W eGrH): Sy =S5}

which is called the stratum correspondingstan anyW € Gr(H) the elements of finite order
form a dense open subspace denotedt#{f. Therefore,W belongs toxs when W29 has a
basis{w,},>0 such that

we(z) = 2" (A +0(™Y) n > 0.

In particular, ifS is the set of non-negative integers the corresponding stratum is a dense open
subset of G¢H) which is called thevig cell of the Grassmannian.

In the analysis of the KdV and AKNS hierarchies one is led to consider the subset of
Gr(H) given by

Gr(H)? = {W e Gr(H) : z°W C W}.

Here z2W denotes the action of the multiplication operator by the functioon W. It is
obvious thatSy + 2 C Sy for all W e Gr(H)®, and consequently the stratification of
Gr(H)®@ turns out to be

Gr(H)? = | = %, 1= Bg, NGr(H)? (4)
m=>0
where
Sp={—m,—m+2,—m+4,... mm+lm+2 .. .}

For describing the AKNS flows in the Grassmannian it is useful to introduce the Hilbert
spaceH := L?(St, C?) of square-integrable functions froft into C2. The scalar product in
H is defined by

/ . dZ z T
(W', w) == /S i ;wi (2) i (2).

There is a canonical isomorphism, also called lexicographic isomorphism, befivaeth
H,

H<«— H w<—><wl)
w2
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given by
w1(z%) = W w2 +2w(_Z)
wa(z?) = w) —wzz) _ZZW(_Z)

w(z) = w1(z%) + zwa(z?).

This isomorphism extends to the corresponding Grassmannians. In what follows, in order to
avoid confusion, given a subspadéin H we will denote by the corresponding subspace
in 1. In particular, notice that the image of @Gf)® under the lexicographic isomorphism is

Gr(H)® = (W € Gr(H) : zWW C W}.

2.2. AKNS flows on the big cell

Let us consider the AKNS linear system of equations for the wavefunction

d

atn

n>1 %)

HereW = W(z, t) denotes &2 x 2)-matrix function such that de = 1, which depends on
a complex parameterand an infinite set of time parameters

t:=(x=t,1213...)

andP, = P,(z,t) (n > 1) are given(2 x 2)-matrix functions with polynomial dependence on
z. We will henceforth assume thdt is an analytic function of on some domain containing
the unit circle|z| = 1, and that it admits a factorization of the form

U=y (6)
where
A, (t
X@H=1+)" ( ) Wo = exr{(Z z’%)«m] lzl =1 @)
>l < n>1

with o3 = diag(1, —1). The compatibility conditions between the flows = 9, andd,,
(n > 2) lead to the system of equations

8nPlza):Pn"'[PnaP]_] l’l>2 (8)

which constitutes the AKNS hierarchy of the nonlinear integrable system for the functions
¢ (t) andr(t) such that

Py = zo3 — 0 4@
R VO A
Consider now the following two-component vector functions:
. ‘1’11) . (‘IJ21>
V1= <\y12 Yo = Uy, )
From (5) it follows thaty; verify a linear system of the form

i = ani (2, YY1+ byi (2, P2 i=12 n>1 )
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wherea,;(z, t) andb,; (z, t) are complex-valued functions polynomially dependent oin
particular,

Y1 =z¥1 — g2 Y2 = —r®)Y1 — 2. (10)
If we define

xi=VYot ¥ i=12
then onS* we have

1 +(’)(1/z)) 01/z2) ) (11)

t = t =

x1(z, t) ( 01/2) x2(z, 1) (1 +0(1/2)

Each AKNS wavefunction determines an elemenbf Gr(H) defined by
W = spaify1(z, t), ¥2(z, t), all admissiblet}

where anadmissiblevalue oft means thai/,1(z, t) andy.(z, t) are non-singular at. Here
span denotes the closurefihof the set of all linear combinations of the form

N
Z(an )Yz, t,) + b, (t;)wZ(Za t;;)) (12)

n>1

with a,,, b, being arbitrary functions ihandt,, t, are arbitrary admissible points@f°. From
(20) itis clear that"v; (z, t) € W,i = 1,2,n > 0, then, taking into account (9) and by using
a Taylor expansion around any valui follows that

W = spany{¥1(z, ), Ya(z, t), any fixed admissible} (13)

where spag,; is defined as span but now, functioms b, in (12) are arbitrary polynomials
in z. As a consequence of (13) we have that each AKNS wavefunction determines a flow in
Gr(H) given by

WI(t) = Wo(z, )W = span, {x1(z, 1), x2(z, )}.

2.3. Tau-functions for AKNS flows

There is a natural embedding of @) in the projective spac® (A*H) of the infinite wedge
spacen™H. It assigns to each the ray inA*°H containing the vector

W) i=wog Awr A=+ Awy A -+

where{w,},>0 is any admissible basis o¥ [8].
Let W be the element in G#) generated by a given AKNS wavefunctidn we define
the associated tau-functions
O g . (HelZ2W(@))
() = — 7 [=0,+1 14
where the scalar produ@tV’|W) denotes the determinant of the matrix whaseg )th element
is(w], w;). (Here{w,},>0and{w,},>o are given admissible basis fla¢’ andv, respectively.)
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The AKNS wavefunctionV can be recovered from its associated tau-functions according

to the following expressions:
Ty (t — 3[2])
(15)

)=
Xl(z ) 7:)58)(1:) (—%T)E\%)(t"'%[Z])

1 1
oz t) = — (ZTW (t_i[z])) (16)

T)E\?) ) 1:158) t+ %[z])

where k] := (1/z,1/27%, ..., 1/nZ",..)).
To derive (15) and (16) we first need the following basic relation which is an immediate
consequence of the definition (14):

Ty (E+8) =13y () - Ty (5) [ =0,+1. (17)
On the other hand, one has (see the appendix)

oy (=3l = (a0 7y GlaD) = —2(a(z, 0)2 1)

7y (3[2) = (xz(z, 0))2 7y 7 (=312D) = 2(x2(z, 0.

Hence, from (17) and (18) the expressions (15) and (16) follow at once.

There are two immediate consequences of (15) and (16). Firstly, the admissible values of
t are obviously those such thaﬁ) (t) # 0. Secondly, a subspagg/*W(t) is in the big cell
of Gr(H) if and only if ry(f,) (t) # 0. In this way, by taking into account that

1 -1
71(/\1) (t) 715\; ()

t)=-—22 "~ =2 W 7
q(t) ‘[1(/8)(1‘,) r(t) r§8>(t)

we conclude that providegl(t) # 0 andr(t) # 0, the AKNS flowsz /W (t) take place in
the big cell of G(H).

3. Hidden AKNS flows in the Grassmannian

3.1. Hidden AKNS flows in the big cell

Let us suppose we have an AKNS wavefunctib(y, t) and take an arbitrary submanifold
M, of finite codimensiomn in C* of the form

h=bi(s) L=bas) ... by=bu(s). (19)
Heres denotes
s = (tm+la Im+2, - - )

and b;j(s) (j = 1,...,m) are given functions. This submanifold can be expressed
parametrically as

t =t(s) = (b1(s), ba(s), ..., bu(s), s).
Consider the restriction of on M,,

Wies(z, 8) 1= W(z, 1(s)). (20)
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Then, ifW is the element of GfH) generated by we have

W = spany,;{¥res1(z, 8), Vres2(z, 5), any fixed admissible} (21)
so that there are decompositions of the form

OnVresi = ani (2, $)Yres1 + bni (2, 8)Yres2 nzm+l i=12
with a,;, b,; being polynomials irx. Equivalently, in terms o4z, s), we have

9 \Wres = Presn—m (2, 8)Wres n>zm+l (22)
with Presn—m D€ING(2 X 2)-matrix functions with polynomial dependence pgiven by

Presn-m = [(Zn + iz‘ianbj>)(re§3xr§§]+ nzm+l

j=1

Here [ ]; denotes the Taylor part of a Laurent series at 0. Notice that trPres,—m = 0, SO
that, in particular, fon = m + 1 we have

0y Wres = Presl(Za 8)Wres X =ty (23)

where Peq1 takes the form

_(p(z.8) q(z,9)
Presl - <F(Z, S) —P(Z, 8)) (24)

with

m
p(z.8) ="+ 2/pi(s)
/=0

q(z,8) =Y 2/q;(s)
j=0

r(z,s) = szrj(s).
j=0

J

We are going to prove that the compatibility conditions of (22) and (23) determine an

integrable hierarchy of non-autonomous nonlinear partial differential equatiogis-nl)-
dimensions. To this end we introduce the matrix function

R (s)

R(z,8) ‘= XreD3Xree = Ro + Z - Ro = o3. (25)
n>1
One immediately finds that
trR=0 detR = —1, 3:R = [Pres1, R]
Presn—m = |:<Zn + szanbj> : Ri| nzm+l (26)
j=1 *

In this way, if we write the coefficients of the expansion/in the form

R, = (an B >
Yn —Qp
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we obtain the recursion relations
k—1

e =—3> (Bivi—j +tajou ;) k=22 a1=0
—1
! m
Burik =+ Y (@i« — piBj—i) k=0,....m
frat]
m
Busink = 3Bix — Z(Pjﬂj+k —qj+k) k=0 (27)
=0
m !
ym+1_k=rk+ Z(rjaj_k—pjyj_k) k:O,...,m
frt]
m
Vim+1+k = _%Vk,x + Z(”jaﬁk — PjVj+k) k > 0.

j=0
Moreover, by using equation (26) f@eg1 we find

m
Pk = bk,x + o1k t Z bj,xOlj_k k=1 ....,m

w0 (28)

Po=0p+1t ij,xaj-
j=1
These recursion relations involve the matrix elementsg,, y, of R, (n > 0) and the
coefficientspy, g, rv (k = 0, ..., m) which determine the potential functioBes; of the
spectral problem(23). It is straightforward to see that they allow us to expesss,, v,
(n>0)andp; (k =0,...,m)intermsofg, r, (k =0, ..., m). Therefore, the compatibility
conditions between (22) and (23)

8nPresl = 0y Presnfm + [Presnfmv Presl] nz>m+l (29)

become nonlinear evolution equations gt r;, (k = 0, ..., m). We notice that due to the
form of (27) and (28) the functions,, 8,, y, and p; are differential polynomials iwg;,
(k = 0,...,m) and the given fixed functions; (; = 1,...,m), so that (29) are non-
autonomous partial differential equations.

For example, let us find the explicit form of the simplest nonlinear integrable system for
the casen = 1. We take a submanifold1, of finite codimension 1 if€> of the form

1 = b(s) s=(x =, t . =10,14,...) (30)
with b(s) being a given function. The first member of the hierarchy derives from the equation
ar Presl = 8x Pres2 + [Pres,2, Presl]- (31)

From (26) and using the expansion (25) it follows that
Pres1 = [(2* + 2b) Rl+ = 2203 + 2(R1 + b,03) + Rp + by R
Preso = [(z% + 2b)R]+ = z%03 + 2°Ry + 2(Ry + by03) + R3 + b, Ry.
In order to write (31) as a system of nonlinear differential equationgdayi, ro andry, we

have to calculate the explicit form of the coefficie®s R, and R3. By using (27) and (28)
one finds at once

Po=—3q1r1 p1=by
a; =0 a2 = —3q1r1 a3 = —3(quro + qory) + byriga
BL=q1 B2 = qo — q1bx Bz = 3q1.. + q1b2 — qoby

1 2
yi=r1 Y2 = rg — riby Y3 = —35r1x triby —roby.
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Thus, one finds that (31) reduces to the following system:
qi: = _qu,xbx - qlbxx + qo,x + q;lz_rlbx - 2qlbxbt + 240[7:

—q2ro — goqur1 — 2q16% + 2qob? (32)
P = —2r1cby = ribo +rox — 17q1by + 2r1biby — 2robs

+riqo + rogiry + 2r1b3 — 2rb? (33)
4o = 2q1cx *+ 2q1bxxby + q1xbE — bixqo — beqox + barq1 + biqy

+q1q0r1by — q1goro — qéry + 3qir1qu . + qirib? + qirib; (34)
Fos = — 31 + 2r1bayby + 11 cb2 — byyrg — byro + byry + beryx

—r1roq1by + qorors +r§qy + 3qirirx — riqibl — qurib;. (35)

From (21), it can be seen that generically the hidden AKNS flows )V (t(s)) take place
in the big cell of G(H). This follows from the fact that the imag#, (t(s)) of z7/3W(t(s))
under the lexicographic isomorphism contains elements of arbitrary non-negative orders.
At this point it is important to consider the reductions of this flows. For the sake of
illustration we will just consider the analogue of the standard AKNS reduction which leads to
the nonlinear Sclirdinger equation.
Let us first assume that the flows are restricted to the subspd&® of the form
t .= (ity,itp,if3,...) with t;eR j=12,...
and consider elemen¥ in the Grassmannian satisfying the reduction condition:
if w=w()isinW theno,w(z)isinW (36)
where an overbar denotes complex conjugationand the first Pauli matrix. From (6), (7),
(11) and (36), it is easy to see that the wavefunction associatedW#htisfies
oV (z,t)o1 = V(z, t).
Thus, by taking an arbitrary submanifald,, of finite codimensionn in R* given by (19),
where nowp;(s) (j =1, 2, ..., m) are real-valued functions, it is found
01Wres(Z, 8)01 = Wreg(2, 8). (37)
In order to study how the equations in the hierarchies are reduced when the above condition is
imposed, we notice that according to (37) and (25) we have
01R(Z, 8)o1 = —R(z, 8)
besides, taking into account that in terms of the new set of tilgg(z, s) = [i(Z"* +
> 12/8:b)) - R]. itis clear that
01Pres1(z, 8)01 = Pres1(z, 8)
and consequently(z, s) = ¢(z, s), or equivalently
”n(S):CIn(S) n=0,1,...,m.
Then, systems in the hierarchies reduce from systemsnot 2 equations to systems of
m + 1 equations. For example, for = 1 and the first system in the hierarchy (32)—(35);
equations (32) and (33) reduce to
ig1s = —2ig1xby — iq1bex +iqgo.r — q1lq1l%by + 2q1b:b, — 2qob,
+q2q0 + qolqu + 29163 — 2qob?
while (34) and (35) transform into
qu,t = %6]1,“ + Ziqlbxxbx + iqubi - ibquo - ibqux + ibxtql + |btqlx - CIo|611|2bx + Q1|L]0|2

+q195 + %iquVIllz — q1lq11°b% — q11q1/°b;.
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3.2. Hidden AKNS flows outside the big cell

Let U (z, t) be a given AKNS wavefunction, from (10) we have

1
Yo = —m@x‘ﬁl —zyn1).

Hence, provided (t) # 0, the elementV € Gr(7) associated witly can be generated in the
form

W = spany,{y1(z, 1), 0:¥1(z, ), any fixedt such thay () # 0}.

Thus, the AKNS spectral problem (10) can be reduced to a second-order differential equation
for 1

1ﬁl,)cx - (lOQQ)x ‘ wl,x = (ZZ - Z(|09q)x + qr)wl (38)
which in turn can be written as anergy-dependei@chibdinger spectral problem

uxf = (& + zus +uo) f (39)
with

_ _ Yxx 3 2
uy = —(logq), ug = ——— + — (3 logg)* + gr (40)
2q 4
where the wavefunctioyf is obtained fromy; by applying the Liouville transformation
2 \ 12
fz,t) = <—> Ya(z, 1) (41)
q(t)

to (38). Itis also clear that

W = spany{f(z, 1), 0, f(z, t), any fixedt such thay (t) # O}
and, consequently, there are decompositions of the form

Inf =an(z, ) f +by(z, )0 f nz=2

with a, andb, being polynomials iry. The compatibility between these equations and (39)
leads to the Jaulent—Miodek hierarchy of integrable equations for the potestials[6].

Our next goal is to characterize a special class of hidden AKNS hierarchies for which
a generalization of the Jaulent—Miodek transformation (40) exists and connects them to
integrable hierarchies associated with more general energy-dependdidiSgar operators.
We start again with a given AKNS wavefunctignand look for those submanifoldgt,, € C*°

t; = b;i(s) i=1...,m s:=(X=tu1, lm+2,...) (42)
such that the following condition is satisfied:

W = spany,{¥res1(z; 8), 0xYres1(z, 8), all admissibles}. (43)
According to (23) and (24) we have

OxYres1 = P(2, 8)Yres1 + q(2, 8)Vres2

(44)

axlﬂresz =r(z, $)Yres1 — P(2, 3)1/fre52~

Theorem 1. The condition (43) is satisfied if and only if

gi(s) =0 i=1...,m. (45)
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Proof. If (45) holds, then from (23)

1
Yres2 = —— (0 Vres1 — P(2, 8)Vres1)
qo(s)
so that it is clear that (43) is satisfied.
Reciprocally, if we assume (43) then there is a decomposition of the form

Yres2 = u(z, 8)Yres1 + V(Z, 8)0x Vres1

with u andv being polynomials in. By substituting this expression in (23) and (24) we obtain

axl,[fresl =(p+ qu)l/fresl + qvaxWresl-
This identity impliesgjv = 1 sothaiy; =0 (i = 1,...,m) andv = g *. O

We notice that according to this theorem the class of hidden AKNS hierarchies of nonlinear
evolution equations fog, v, (k = 0, ..., m) satisfying (43) is characterized by a single
hierarchy forb; i = 1,...,m),qo,rx (k = 1,...,m). Indeed, now the functions;(s)
characterizing the submanifoll,, are no longer fixed but they become dynamical variables
with evolution equations which derive from the conditiong; = 0,n > m+1,i =1,..., m.

For example, consider the hidden hierarchies with= 1 which satisfy (43), the evolution
equation corresponding to:= 3 is given by (32)—(35), so that by settigg = 0 it follows
that

1QOJ( 2

b=z

' 2 qo *
qo,r = —bxxqo — brqox — C]gl’l

1 1 q0,x 1 q0,xx qg,x
ror = _Erl,xx — byxro— bxro** * qorors — E q0 T 5 q0 - q2 "
0

qo,
1 = —2r1.by — riby, + o, +qor? + q—x('”o — b,ry).
0
These special hidden hierarchies can be related to energy-dependémtiSgphir spectral

problems as follows. Firstly, notice that as a consequence of the theorem, if (43) is satisfied
then

OxxVres1 — qo_’xaﬂﬂresl = (1’2 - %;XP ot 6IO”) Yres1.- (46)
q0 qo
Therefore, we can perform a Liouville transformation
2 \12
fi= ( ) Vres1 (47)
qo(s)
which converts (46) into an energy-dependent 8dlmger spectral problem
2m+1
dur f = (ZM ) un(s)z”>f (48)
n=0

where the potential coefficients, are obtained fronp andgo by identifying powers ot in
the identity

2m+1 90 90 3 9 2
MY u () = pPHpotqor — —p - ’”+-< ’X> :
= qo 2q0 4\ qo
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The important point is that (47) implies

W = spany{f(z, 8), 3 f (z, s), any fixeds such thao(s) # 0}
and consequently there are decompositions of the form

Onf =an(z, 8) f +bu(z, $)0x f nz?2

with a, andb, being polynomials iry. The compatibility between these equations and (48)
leads to a hierarchy of integrable equations for the potentjalgs =0, ..., 2m + 1) [7].

The following theorem provides a method for constructing solutions for this hierarchy.
Furthermore, itis useful to find the strata of the Grassmannian on which these hidden hierarchies
flow.

Theorem 2. The condition (43) is satisfied if and onlyyifes1 is of the form

1 +O(1/z)>

O(l/Zm+l) (49)

1presl(zv s) = Wo(z, t(s)) (

Proof. If (43) holds then as a consequence of theorem 1 the first equation in (44) reads

m

OxYres1 = (Zm+l + Z 2" pn (3)) Yres1 + qo(8) Yres2.
n=0

By using the expansions

1+ Zan(s)/z"
Wresl = Wo(z, t(s)) o;l:l
D en(s)/2"
n=1
D du()/2"
Yresz = Wo(z. t(s)) [ "1,
1+ Zen(S)/Z”
n=1
one finds
m o0 1
2" (py + b 22 0= O<_>
( Z ;z (p )) ; o o -
so thatc; = ¢, = - -+ = ¢,, = 0 and (49) follows.

Reciprocally, assume that (49) is satisfied, then we may write

a(z,s) c(z, s))

“III’ES: Xres\po(z, t(s)) Xres = (d(Z S) e(Z 5)

1 1
a(Z,S)=1+O - C(Z,S)ZO ey
Z Z
1 1
d(z,s) = 0| - e(z,8)=1+0( - ).
Z Z

where
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On the other hand,

p(z,8)  q(z,s) el L N _
Preﬂ:( r(z,s) —p(z,s) )Z [(Z 1+Zz18xbj>xresaaxreil~ 0

j=1
By direct computation one finds
cd ac
Xre<TaX -1 _ 1+ Zae —cd _zae —cd _ 1+ O(l/z””z) O(l/zmﬂ)
res7s res 5 de 15 O(1/z) —1-0(1/2"*?)
ae —cd ae —cd
sothat from (50) we fing (z, s) = go(s) and then, as a consequence of theorem 1, we conclude
that (43) is satisfied. a

According to (49) the hidden hierarchies satisfying (43) are associated with submanifolds
t = t(s) such that
D (t(s)) = 0.

Therefore, the flowe=>*W(t(s)) lies outside the big cell. In order to analyse this feature let
us observe that provided (43) holds then

1+) an(s)/"
n=1

Yres1 = Wol(z, t(s)) 00

Y als)/2"

n=m+1

so that by introducing

¢’resl = <<2m+l + Z bann) I//resl — 0y I/ﬁesl)
n=1

2Cm+1
O(1/z)

=Yt | ez tbmennl | 0o

Z

Cm+1
we may describe= W as

span{z” " Vres1(z, 8), 2 “¢res1(z, 5), all admissibles}.

Let us now consider the imag@,(s) of z=*W(t(s)) in Gr(H) under the lexicographic
isomorphism, we have

W]_(S) = Spar@:[zz] {g(Za S), g(zv S)}
where ¢ and g denote the corresponding images @fo(z,t(s)) 1z ®Yres1 and
Wo(z, t(5)) "1z B ¢res1, respectively. Two situations arise:

(@) m = 1. In this case

+
g:2+i2+0<i3> g:Z3+C3—bGCZZ+O<1->
e 4 Z Cc2 <

so that
4 =_ .2
7"g — 28 =2+ 0(2).
Hence, it follows easily that the s8fy, (s, of orders of elements i/, is given by
Swes ={-1,1,2,3,...}.
This means thaW,(s) is in the stratun®, of Gr(H).
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(b) m > 1. Now we have

1 1 +b 1
= brefl) reseneof)

then it follows at once that
Swis) ={—2,0,2,3,...}.
Therefore,W1(s) is in the stratunk, of Gr(H).

Appendix

We devote this appendix to check expressions (18), giving the relation between the AKNS tau-
functions and the corresponding wavefunction. In order to compute the determinants involved
in these expressions, we choose for the tags and|W) = [W(0)):

|Hs) = e1 A eo A zer Azeo Az2er Az%ea A -+ (A1)
IW) = wo1 A w2 Awi1 Awia AWl AwWaa A+

where{es, -} is the canonical basis 62 andw, ;,i = 1,2,n > 0 denotes the element v
such thatw, ;)+ = z"¢; (the existence and uniqueness of such an element derive from (11) and
(13)). On the other hand, from (11) it is clear thatz, 0) = wo,1(z) andx2(z, 0) = wo 2(z).

By using the definition o#//(t) one obtains at once

-1
W(=3l21)) = ((1— Z;) E11+E22> W)
N\ —1
IW(3lz])) = <E11+ (1 - %) Ezz) (W)
1 7\t
1) W(3l2l)) = (;Ell +7 (1 - ;) Ezz) (W)

N\ —1
/\O: / Z 1
[(z") 3W(_%[Z])> = <Z (1 - Z) Eq + ;E22> (W)
where as usualE1y);; = 81:81;, (E22)i; = 82:82; (i, j = 1, 2). Now, for example, in order

to obtain(HﬁW(—%[z])) we need to compute the scalar products determined by the basis
chosen in (A1):

N —1
(Z"eil ((1 - Z;) Eq + Ezz) wy, j(2)) rs20 i,j=12

which are given by

(el ((1 - %)_l Ey+ Ezz) ws1(2)) =27 (w11 — 2" 0 > r+1)
(Z"el ((1 - %)_1 Eu+ E22> ws 2(2)) = 27" (s 2(2))1
(A2)
(" es| ((1 — Z;/>_1 Eqi+ E22> ws1(z)) =0
(el ((1 - %)1 Ey+ Ezz) ws 2(2)) = 85
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where

1 ifr=s 1 ifs>r
= >r) =
rs {0 otherwise and b =7) {0 otherwise

Thus, from (A2), we have
(He W (=3[2D)

(wo,1(2))1 (wo2(2)1  (wri@)1—z  (wi2())1 (w21(2)1 — 22 (w2,2(2))1
0 1 0 0 0 0
T Hwoar@)1 T Hwo2@)1 T rwia@)1 2wz T twaa@)i—z 2 twa2())
0 0 0 1 0 0
2wor(@)1 2 2wo2(@)1 T Awri@)1 22wz 2 P(w2a@)1 2 A(w22())1

0 0 0 0 0 1

= (wo,1(2))1 = (x1(z, 0))1.

Then, by taking into account th&kt.[)V) = 1, we obtain

7 = (x1(z, O)1.

Proceeding in the same way one easily finds the other formulae in equation (18).
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