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Abstract. A method for constructing integrable hierarchies by restricting AKNS flows on
manifolds of finite codimension in the space of independent parameters is provided. Two particular
types of hierachies are characterized: one is given by nonlinear differential equations with
coordinate-dependent coefficients and the other is related to Schrödinger spectral problems with
energy-dependent potentials of even degree.

1. Introduction

We have recently introduced the notion ofhidden hierarchies[1] to describe integrable models
which arise by restricting the KP flows and their reductions to certain submanifoldsMm of
finite codimensionm

t1 = b1(tm+1, tm+2, . . .) t2 = b2(tm+1, tm+2, . . .) . . . tm = bm(tm+1, tm+2, . . .) (1)

in the space of independent parameterst = (t1, t2, . . .) ∈ C∞. In [1–3] hidden hierarchies
associated with KdV flows are analysed and they are found to provide integrable models related
to theenergy-dependentSchr̈odinger spectral problems

∂xxf =
(
z2m+1 +

2m∑
n=0

znun(x)

)
f. (2)

Furthermore, it is proved that these hierarchies are connected to the zero manifolds ofτ -
functions and, consequently, their corresponding flows in the Grassmannian take place outside
the big cell.

The methods used in [1–3] provide the starting point of a general technique for
deriving integrable models which are based on the consideration of constrained flows on the
Grassmannian. The input of this technique is a wavefunction9(z, t)of a KP hierarchy or of one
of their reductions and the aim is to characterize submanifoldsMm such that the restriction9res

of 9 toMm satisfies an infinite system of linear problems which determines the dependence
of 9res on the parameters(tm+1, tm+2, . . .). Under these conditions, the compatibility of the
system of linear problems leads to a hidden hierarchy.

In the present paper these methods are applied to study hidden hierarchies arising from
AKNS flows. In this case a fundamental difference arises with respect to our previous
results about the hidden KP hierarchy; namely,for arbitrary Mm the restrictions of AKNS
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wavefunctions satisfy a system of linear problems(this feature is also considered from
another point of view in recent works, see for instance [4, 5]). Consequently, these restricted
wavefunctions determine hidden hierarchies which, generically, flow in the big cell of the
Grassmannian. Furthermore, their integrable systems turn out to be non-autonomous evolution
equations depending on the arbitrary functionsbi(tm+1, tm+2, . . .), i = 1, . . . , m which define
Mm. We also derive a different class of hidden AKNS hierarchies which flow outside the
big cell of the Grassmannian. These hierarchies are determined by imposing appropriate
conditions onMm and, under certain transformations, turn out to describe the integrable
systems associated with the class ofenergy-dependentSchr̈odinger operators

∂xxf =
(
z2m+2 +

2m+1∑
n=0

znun(x)

)
f. (3)

Case (3) withm = 0, which does not correspond to any hidden AKNS hierarchy, it is associated
with the Jaulent–Miodek hierarchy [6], which in turn becomes the standard AKNS hierarchy
under an appropriate transformation.

The existence of the hidden AKNS flows not only outside the big cell but also on the big
cell is a new feature with respect to the previously studied one-component KP hierarchy.

Observe that (2) and (3) represent the whole set of Schrödinger operators with a potential
function which has a polynomial dependence on the spectral parameter. The corresponding
hierarchies of integrable systems have already been described in [7], but no indications about
methods of solution nor its group-theoretical interpretation from the point of view of Birkhoff
factorization were provided. Our results in the present paper as well as those in [1–3] fill
these gaps. In this sense we notice that there is a direct relationship between the Birkhoff
factorization of a flow and the stratum in the Grassmannian on which it lies [8, 9, 12].

This paper is organized as follows. In section 2 we recall the main ideas about the
Grassmannian and its stratified structure (subsection 2.1), we describe the AKNS flows in
the Grassmannian (subsection 2.2) and the relation between the AKNS wavefunction and the
corresponding tau-functions is established (subsection 2.3). Some details about this fact are
provided in the appendix, at the end of the paper.

In section 3 we describe the hidden AKNS flows in the big cell of the Grassmannian,
the hierarchies of integrable systems associated with them (subsection 3.1), the hidden AKNS
flows outside the big cell and the relation with the hierarchies connected to energy-dependent
Schr̈odinger operators (subsection 3.2). Finally, we consider reductions of the AKNS flows in
the big cell (subsection 3.3).

2. AKNS flows on the Grassmannian

2.1. The stratification of the Grassmannian

It is well known that a wavefunction of theN -component KP hierarchy leads to a flow in
the Grassmannian which can be formulated in several ways [8–11]. In what follows we will
take advantage of the lexicographic isomorphism [8, 9] for applying the stratification of the
standard one-component KP Grassmannian to study the hidden AKNS flows. To this end let
us introduce the Hilbert spaceH := L2(S1,C) of square-integrable complex-valued functions
onS1, with the scalar product being defined by

〈w′, w〉 :=
∫
S1

dz

2π iz
w′(z)w(z).
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We consider the decomposition ofH as the direct sum of the closed subspacesH± generated
by zn : n > 0 andz−n : n > 1, respectively. The Grassmannian Gr(H) is the set of all closed
subspacesW of H such that

(a) The orthogonal projectionsP±:W −→ H± are operators of Fredholm and compact types,
respectively.

(b) The virtual dimension ofW (i.e. the index ofP+) is zero.

It can be proved that Gr(H) is a Hilbert manifold with a stratified structure. The strata of
Gr(H) can be described by introducing the setS0 of increasing sequences of integers

S = {s0, s1, s2, . . .}
such thatsn = n for all sufficiently largen. EachW ∈ Gr(H) determines a sequence of this
type. To see this point recall that an elementW ∈ H is said to be of finite ordern if it can be
expressed in the formw = ∑m6n amz

m, with an 6= 0. Thus, due to the fact that the virtual
dimension ofW is zero, it can be shown that the sequence

SW = {n ∈ Z : W contains an element of ordern}
is an element ofS0. Then, givenS ∈ S0 we may define the subset of Gr(H)

6S = {W ∈ Gr(H) : SW = S}
which is called the stratum corresponding toS. In anyW ∈ Gr(H) the elements of finite order
form a dense open subspace denoted byW alg. Therefore,W belongs to6S whenW alg has a
basis{wn}n>0 such that

wn(z) = zsn(1 +O(z−1)) n > 0.

In particular, ifS is the set of non-negative integers the corresponding stratum is a dense open
subset of Gr(H) which is called thebig cellof the Grassmannian.

In the analysis of the KdV and AKNS hierarchies one is led to consider the subset of
Gr(H) given by

Gr(H)(2) = {W ∈ Gr(H) : z2W ⊂ W }.
Herez2W denotes the action of the multiplication operator by the functionz2 onW . It is
obvious thatSW + 2 ⊂ SW for all W ∈ Gr(H)(2), and consequently the stratification of
Gr(H)(2) turns out to be

Gr(H)(2) =
⋃
m>0

6m 6m := 6Sm ∩Gr(H)(2) (4)

where

Sm = {−m,−m + 2,−m + 4, . . . , m,m + 1, m + 2, . . .}.
For describing the AKNS flows in the Grassmannian it is useful to introduce the Hilbert

spaceH := L2(S1,C2) of square-integrable functions fromS1 intoC2. The scalar product in
H is defined by

〈w′, w〉 :=
∫
S1

dz

2π iz

2∑
i=1

wi
′(z)wi(z).

There is a canonical isomorphism, also called lexicographic isomorphism, betweenH and
H,

H ←→ H w←→
(
w1

w2

)
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given by

w1(z
2) = w(z) +w(−z)

2

w2(z
2) = w(z)− w(−z)

2z
w(z) = w1(z

2) + zw2(z
2).

This isomorphism extends to the corresponding Grassmannians. In what follows, in order to
avoid confusion, given a subspaceW in H we will denote byW the corresponding subspace
in H. In particular, notice that the image of Gr(H)(2) under the lexicographic isomorphism is

Gr(H)(2) = {W ∈ Gr(H) : zW ⊂W}.

2.2. AKNS flows on the big cell

Let us consider the AKNS linear system of equations for the wavefunction

∂n9 = Pn9 ∂n = ∂

∂tn
n > 1. (5)

Here9 = 9(z, t) denotes a(2× 2)-matrix function such that det9 = 1, which depends on
a complex parameterz and an infinite set of time parameters

t := (x ≡ t1, t2, t3, . . .)
andPn = Pn(z, t) (n > 1) are given(2×2)-matrix functions with polynomial dependence on
z. We will henceforth assume that9 is an analytic function ofz on some domain containing
the unit circle|z| = 1, and that it admits a factorization of the form

9 = χ ·90 (6)

where

χ(z, t) = 1 +
∑
n>1

An(t)

zn
90 = exp

[(∑
n>1

zntn

)
σ3

]
|z| = 1 (7)

with σ3 = diag(1,−1). The compatibility conditions between the flows∂x ≡ ∂1 and∂n,
(n > 2) lead to the system of equations

∂nP1 = ∂xPn + [Pn, P1] n > 2 (8)

which constitutes the AKNS hierarchy of the nonlinear integrable system for the functions
q(t) andr(t) such that

P1 = zσ3−
(

0 q(t)

r(t) 0

)
.

Consider now the following two-component vector functions:

ψ1 :=
(
911

912

)
ψ2 :=

(
921

922

)
.

From (5) it follows thatψi verify a linear system of the form

∂nψi = ani(z, t)ψ1 + bni(z, t)ψ2 i = 1, 2 n > 1 (9)
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whereani(z, t) andbni(z, t) are complex-valued functions polynomially dependent onz. In
particular,

∂xψ1 = zψ1− q(t)ψ2 ∂xψ2 = −r(t)ψ1− zψ2. (10)

If we define

χi := 9−1
0 · ψi i = 1, 2

then onS1 we have

χ1(z, t) =
(

1 +O(1/z)
O(1/z)

)
χ2(z, t) =

(
O(1/z)

1 +O(1/z)

)
. (11)

Each AKNS wavefunction determines an elementW of Gr(H) defined by

W := span{ψ1(z, t), ψ2(z, t), all admissiblet}
where anadmissiblevalue oft means thatψ1(z, t) andψ2(z, t) are non-singular att. Here
span denotes the closure inH of the set of all linear combinations of the form

N∑
n>1

(an(tn)ψ1(z, tn) + bn(t
′
n)ψ2(z, t

′
n)) (12)

with an, bn being arbitrary functions int andtn, t′n are arbitrary admissible points inC∞. From
(10) it is clear thatznψi(z, t) ∈W, i = 1, 2,n > 0, then, taking into account (9) and by using
a Taylor expansion around any valuet it follows that

W := spanC[z]{ψ1(z, t), ψ2(z, t), any fixed admissiblet} (13)

where spanC[z] is defined as span but now, functionsan, bn in (12) are arbitrary polynomials
in z. As a consequence of (13) we have that each AKNS wavefunction determines a flow in
Gr(H) given by

W(t) := 90(z, t)
−1W = spanC[z]{χ1(z, t), χ2(z, t)}.

2.3. Tau-functions for AKNS flows

There is a natural embedding of Gr(H) in the projective spaceP(∧∞H) of the infinite wedge
space∧∞H. It assigns to eachW the ray in∧∞H containing the vector

|W〉 := w0 ∧ w1 ∧ · · · ∧ wn ∧ · · ·
where{wn}n>0 is any admissible basis ofW [8].

LetW be the element in Gr(H) generated by a given AKNS wavefunction9, we define
the associated tau-functions

τ
(l)
W (t) := 〈H+|z−lσ3W(t)〉

〈H+|W〉 l = 0,±1 (14)

where the scalar product〈W ′|W〉 denotes the determinant of the matrix whose(i, j)th element
is〈w′i , wj 〉. (Here{w′n}n>0 and{wn}n>0 are given admissible basis forW ′ andW, respectively.)
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The AKNS wavefunction9 can be recovered from its associated tau-functions according
to the following expressions:

χ1(z, t) = 1

τ
(0)
W (t)

 τ
(0)
W (t− 1

2[z])

−1

z
τ
(1)
W (t + 1

2[z])

 (15)

χ2(z, t) = 1

τ
(0)
W (t)

1

z
τ
(−1)
W (t− 1

2[z])

τ
(0)
W (t + 1

2[z])

 (16)

where [z] := (1/z, 1/2z2, . . . ,1/nzn, . . .).
To derive (15) and (16) we first need the following basic relation which is an immediate

consequence of the definition (14):

τ
(l)
W (t + s) = τ (0)W (t) · τ (l)W(t)(s) l = 0,±1. (17)

On the other hand, one has (see the appendix)

τ
(0)
W (− 1

2[z]) = (χ1(z, 0))1 τ
(1)
W (

1
2[z]) = −z(χ1(z, 0))2

τ
(0)
W (

1
2[z]) = (χ2(z, 0))2 τ

(−1)
W (− 1

2[z]) = z(χ2(z, 0))1.
(18)

Hence, from (17) and (18) the expressions (15) and (16) follow at once.
There are two immediate consequences of (15) and (16). Firstly, the admissible values of

t are obviously those such thatτ (0)W (t) 6= 0. Secondly, a subspacez−lσ3W(t) is in the big cell
of Gr(H) if and only if τ (l)W (t) 6= 0. In this way, by taking into account that

q(t) = −2
τ
(1)
W (t)

τ
(0)
W (t)

r(t) = −2
τ
(−1)
W (t)

τ
(0)
W (t)

we conclude that providedq(t) 6= 0 andr(t) 6= 0, the AKNS flowsz−lσ3W(t) take place in
the big cell of Gr(H).

3. Hidden AKNS flows in the Grassmannian

3.1. Hidden AKNS flows in the big cell

Let us suppose we have an AKNS wavefunction9(z, t) and take an arbitrary submanifold
Mm of finite codimensionm in C∞ of the form

t1 = b1(s) t2 = b2(s) . . . tm = bm(s). (19)

Heres denotes

s = (tm+1, tm+2, . . .)

and bj (s) (j = 1, . . . , m) are given functions. This submanifold can be expressed
parametrically as

t = t(s) = (b1(s), b2(s), . . . , bm(s), s).

Consider the restriction of9 onMm

9res(z, s) := 9(z, t(s)). (20)
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Then, ifW is the element of Gr(H) generated by9 we have

W = spanC[z]{ψres,1(z, s), ψres,2(z, s), any fixed admissibles} (21)

so that there are decompositions of the form

∂nψres,i = ani(z, s)ψres,1 + bni(z, s)ψres,2 n > m + 1 i = 1, 2

with ani, bni being polynomials inz. Equivalently, in terms of9res(z, s), we have

∂n9res= Pres,n−m(z, s)9res n > m + 1 (22)

with Pres,n−m being(2× 2)-matrix functions with polynomial dependence onz given by

Pres,n−m =
[(
zn +

m∑
j=1

zj ∂nbj

)
χresσ3χ

−1
res

]
+

n > m + 1.

Here [ ]+ denotes the Taylor part of a Laurent series atz = 0. Notice that trPres,n−m = 0, so
that, in particular, forn = m + 1 we have

∂x9res= Pres,1(z, s)9res x ≡ tm+1 (23)

wherePres,1 takes the form

Pres,1 =
(
p(z, s) q(z, s)

r(z, s) −p(z, s)
)

(24)

with

p(z, s) := zm+1 +
m∑
j=0

zjpj (s)

q(z, s) :=
m∑
j=0

zjqj (s)

r(z, s) :=
m∑
j=0

zj rj (s).

We are going to prove that the compatibility conditions of (22) and (23) determine an
integrable hierarchy of non-autonomous nonlinear partial differential equations in(1 + 1)-
dimensions. To this end we introduce the matrix function

R(z, s) := χresσ3χ
−1
res = R0 +

∑
n>1

Rn(s)

zn
R0 = σ3. (25)

One immediately finds that

trR = 0 detR = −1, ∂xR = [Pres,1, R]

Pres,n−m =
[(
zn +

m∑
j=1

zj ∂nbj

)
· R
]

+

n > m + 1. (26)

In this way, if we write the coefficients of the expansion ofR in the form

Rn =
(
αn βn

γn −αn

)
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we obtain the recursion relations

αk = − 1
2

k−1∑
j=1

(βjγk−j + αjαk−j ) k > 2 α1 = 0

βm+1−k = qk +
m∑

j=k+1

(qjαj−k − pjβj−k) k = 0, . . . , m

βm+1+k = 1
2βk,x −

m∑
j=0

(pjβj+k − qjαj+k) k > 0

γm+1−k = rk +
m∑

j=k+1

(rjαj−k − pjγj−k) k = 0, . . . , m

γm+1+k = − 1
2γk,x +

m∑
j=0

(rjαj+k − pjγj+k) k > 0.

(27)

Moreover, by using equation (26) forPres,1 we find

pk = bk,x + αm+1−k +
m∑

j=k+1

bj,xαj−k k = 1, . . . , m

p0 = αm+1 +
m∑
j=1

bj,xαj .

(28)

These recursion relations involve the matrix elementsαn, βn, γn of Rn (n > 0) and the
coefficientspk, qk, rk (k = 0, . . . , m) which determine the potential functionPres,1 of the
spectral problem(23). It is straightforward to see that they allow us to expressαn, βn, γn
(n > 0) andpk (k = 0, . . . , m) in terms ofqk, rk (k = 0, . . . , m). Therefore, the compatibility
conditions between (22) and (23)

∂nPres,1 = ∂xPres,n−m + [Pres,n−m, Pres,1] n > m + 1 (29)

become nonlinear evolution equations forqk, rk (k = 0, . . . , m). We notice that due to the
form of (27) and (28) the functionsαn, βn, γn andpk are differential polynomials inqk, rk
(k = 0, . . . , m) and the given fixed functionsbj (j = 1, . . . , m), so that (29) are non-
autonomous partial differential equations.

For example, let us find the explicit form of the simplest nonlinear integrable system for
the casem = 1. We take a submanifoldM1 of finite codimension 1 inC∞ of the form

t1 = b(s) s = (x := t2, t := t3, t4, . . .) (30)

with b(s) being a given function. The first member of the hierarchy derives from the equation

∂tPres,1 = ∂xPres,2 + [Pres,2, Pres,1]. (31)

From (26) and using the expansion (25) it follows that

Pres,1 = [(z2 + zbx)R]+ = z2σ3 + z(R1 + bxσ3) +R2 + bxR1

Pres,2 = [(z3 + zbt )R]+ = z3σ3 + z2R1 + z(R2 + btσ3) +R3 + btR1.

In order to write (31) as a system of nonlinear differential equations forq0, q1, r0 andr1, we
have to calculate the explicit form of the coefficientsR1, R2 andR3. By using (27) and (28)
one finds at once

p0 = − 1
2q1r1 p1 = bx

α1 = 0 α2 = − 1
2q1r1 α3 = − 1

2(q1r0 + q0r1) + bxr1q1

β1 = q1 β2 = q0 − q1bx β3 = 1
2q1,x + q1b

2
x − q0bx

γ1 = r1 γ2 = r0 − r1bx γ3 = − 1
2r1,x + r1b

2
x − r0bx.
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Thus, one finds that (31) reduces to the following system:

q1,t = −2q1,xbx − q1bxx + q0,x + q2
1r1bx − 2q1bxbt + 2q0bt

−q2
1r0 − q0q1r1− 2q1b

3
x + 2q0b

2
x (32)

r1,t = −2r1,xbx − r1bxx + r0,x − r2
1q1bx + 2r1bxbt − 2r0bt

+r2
1q0 + r0q1r1 + 2r1b

3
x − 2r0b

2
x (33)

q0,t = 1
2q1,xx + 2q1bxxbx + q1,xb

2
x − bxxq0 − bxq0,x + bxtq1 + btq1,x

+q1q0r1bx − q1q0r0 − q2
0r1 + 1

2q1r1q1,x + q2
1r1b

2
x + q2

1r1bt (34)

r0,t = − 1
2r1,xx + 2r1bxxbx + r1,xb

2
x − bxxr0 − bxr0,x + bxt r1 + bt r1,x

−r1r0q1bx + q0r0r1 + r2
0q1 + 1

2q1r1r1,x − r2
1q1b

2
x − q1r

2
1bt . (35)

From (21), it can be seen that generically the hidden AKNS flowsz−lσ3W(t(s)) take place
in the big cell of Gr(H). This follows from the fact that the imageWl(t(s)) of z−lσ3W(t(s))
under the lexicographic isomorphism contains elements of arbitrary non-negative orders.

At this point it is important to consider the reductions of this flows. For the sake of
illustration we will just consider the analogue of the standard AKNS reduction which leads to
the nonlinear Schrödinger equation.

Let us first assume that the flows are restricted to the subspace ofC∞ of the form

t := (it1, it2, it3, . . .) with tj ∈ R j = 1, 2, . . .

and consider elementsW in the Grassmannian satisfying the reduction condition:

if w = w(z) is inW thenσ1w(z) is inW (36)

where an overbar denotes complex conjugation andσ1 is the first Pauli matrix. From (6), (7),
(11) and (36), it is easy to see that the wavefunction associated withW satisfies

σ19(z, t)σ1 = 9(z, t).
Thus, by taking an arbitrary submanifoldMm of finite codimensionm in R∞ given by (19),
where nowbj (s) (j = 1, 2, . . . , m) are real-valued functions, it is found

σ19res(z, s)σ1 = 9res(z, s). (37)

In order to study how the equations in the hierarchies are reduced when the above condition is
imposed, we notice that according to (37) and (25) we have

σ1R(z, s)σ1 = −R(z, s)
besides, taking into account that in terms of the new set of timesPres,1(z, s) = [i (zm+1 +∑m

j=1 z
j ∂xbj ) · R]+ it is clear that

σ1Pres,1(z, s)σ1 = Pres,1(z, s)

and consequentlyr(z, s) = q(z, s), or equivalently

rn(s) = qn(s) n = 0, 1, . . . , m.

Then, systems in the hierarchies reduce from systems of 2m + 2 equations to systems of
m + 1 equations. For example, form = 1 and the first system in the hierarchy (32)–(35);
equations (32) and (33) reduce to

iq1,t = −2iq1,xbx − iq1bxx + iq0,x − q1|q1|2bx + 2q1bxbt − 2q0bt

+q2
1q0 + q0|q1|2 + 2q1b

3
x − 2q0b

2
x

while (34) and (35) transform into

iq0,t = 1
2q1,xx + 2iq1bxxbx + iq1,xb

2
x − ibxxq0 − ibxq0x + ibxtq1 + ibtq1x − q0|q1|2bx + q1|q0|2

+q1q
2
0 + 1

2iq1,x |q1|2 − q1|q1|2b2
x − q1|q1|2bt .
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3.2. Hidden AKNS flows outside the big cell

Let9(z, t) be a given AKNS wavefunction, from (10) we have

ψ2 = − 1

q(t)
(∂xψ1− zψ1).

Hence, providedq(t) 6= 0, the elementW ∈ Gr(H) associated with9 can be generated in the
form

W := spanC[z]{ψ1(z, t), ∂xψ1(z, t), any fixedt such thatq(t) 6= 0}.
Thus, the AKNS spectral problem (10) can be reduced to a second-order differential equation
for ψ1

ψ1,xx − (logq)x · ψ1,x = (z2 − z(logq)x + qr)ψ1 (38)

which in turn can be written as anenergy-dependentSchr̈odinger spectral problem

∂xxf = (z2 + zu1 + u0)f (39)

with

u1 = −(logq)x u0 = −qxx
2q

+
3

4
(∂x logq)2 + qr (40)

where the wavefunctionf is obtained fromψ1 by applying the Liouville transformation

f (z, t) =
(

2

q(t)

)1/2

ψ1(z, t) (41)

to (38). It is also clear that

W := spanC[z]{f (z, t), ∂xf (z, t), any fixedt such thatq(t) 6= 0}
and, consequently, there are decompositions of the form

∂nf = an(z, t)f + bn(z, t)∂xf n > 2

with an andbn being polynomials inz. The compatibility between these equations and (39)
leads to the Jaulent–Miodek hierarchy of integrable equations for the potentialsu0, u1 [6].

Our next goal is to characterize a special class of hidden AKNS hierarchies for which
a generalization of the Jaulent–Miodek transformation (40) exists and connects them to
integrable hierarchies associated with more general energy-dependent Schrödinger operators.
We start again with a given AKNS wavefunction9 and look for those submanifoldsMm ∈ C∞

ti = bi(s) i = 1, . . . , m s := (x ≡ tm+1, tm+2, . . .) (42)

such that the following condition is satisfied:

W := spanC[z]{ψres,1(z, s), ∂xψres,1(z, s), all admissibles}. (43)

According to (23) and (24) we have

∂xψres,1 = p(z, s)ψres,1 + q(z, s)ψres,2

∂xψres,2 = r(z, s)ψres,1− p(z, s)ψres,2.
(44)

Theorem 1. The condition (43) is satisfied if and only if

qi(s) ≡ 0 i = 1, . . . , m. (45)
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Proof. If (45) holds, then from (23)

ψres,2 = 1

q0(s)
(∂xψres,1− p(z, s)ψres,1)

so that it is clear that (43) is satisfied.
Reciprocally, if we assume (43) then there is a decomposition of the form

ψres,2 = u(z, s)ψres,1 + v(z, s)∂xψres,1

with u andv being polynomials inz. By substituting this expression in (23) and (24) we obtain

∂xψres,1 = (p + qu)ψres,1 + qv∂xψres,1.

This identity impliesqv = 1 so thatqi = 0 (i = 1, . . . , m) andv = q−1
0 . �

We notice that according to this theorem the class of hidden AKNS hierarchies of nonlinear
evolution equations forqk, rk (k = 0, . . . , m) satisfying (43) is characterized by a single
hierarchy forbi (i = 1, . . . , m), q0, rk (k = 1, . . . , m). Indeed, now the functionsbl(s)
characterizing the submanifoldMm are no longer fixed but they become dynamical variables
with evolution equations which derive from the conditions∂nqi = 0,n > m+1, i = 1, . . . , m.
For example, consider the hidden hierarchies withm = 1 which satisfy (43), the evolution
equation corresponding tot := t3 is given by (32)–(35), so that by settingq1 = 0 it follows
that

bt = −1

2

q0,x

q0
− b2

x

q0,t = −bxxq0 − bxq0,x − q2
0r1

r0,t = −1

2
r1,xx − bxxr0 − bxr0,x + q0r0r1− 1

2

q0,x

q0
r1,x − 1

2

(
q0,xx

q0
− q

2
0,x

q2
0

)
r1

r1,t = −2r1,xbx − r1bxx + r0,x + q0r
2
1 +

q0,x

q0
(r0 − bxr1).

These special hidden hierarchies can be related to energy-dependent Schrödinger spectral
problems as follows. Firstly, notice that as a consequence of the theorem, if (43) is satisfied
then

∂xxψres,1− q0,x

q0
∂xψres,1 =

(
p2 − q0,x

q0
p + px + q0r

)
ψres,1. (46)

Therefore, we can perform a Liouville transformation

f :=
(

2

q0(s)

)1/2

ψres,1 (47)

which converts (46) into an energy-dependent Schrödinger spectral problem

∂xxf =
(
z2m+2 +

2m+1∑
n=0

un(s)z
n

)
f (48)

where the potential coefficientsun are obtained fromp andq0 by identifying powers ofz in
the identity

z2m+2 +
2m+1∑
n=0

un(s)z
n = p2 + px + q0r − q0,x

q0
p − q0,xx

2q0
+

3

4

(
q0,x

q0

)2

.



3632 B Konopelchenko et al

The important point is that (47) implies

W := spanC[z]{f (z, s), ∂xf (z, s), any fixeds such thatq0(s) 6= 0}
and consequently there are decompositions of the form

∂nf = an(z, s)f + bn(z, s)∂xf n > 2

with an andbn being polynomials inz. The compatibility between these equations and (48)
leads to a hierarchy of integrable equations for the potentialsun (n = 0, . . . ,2m + 1) [7].

The following theorem provides a method for constructing solutions for this hierarchy.
Furthermore, it is useful to find the strata of the Grassmannian on which these hidden hierarchies
flow.

Theorem 2. The condition (43) is satisfied if and only ifψres,1 is of the form

ψres,1(z, s) = 90(z, t(s))

(
1 +O(1/z)
O(1/zm+1)

)
. (49)

Proof. If (43) holds then as a consequence of theorem 1 the first equation in (44) reads

∂xψres,1 =
(
zm+1 +

m∑
n=0

znpn(s)

)
ψres,1 + q0(s)ψres,2.

By using the expansions

ψres,1 = 90(z, t(s))


1 +

∞∑
n=1

an(s)/z
n

∞∑
n=1

cn(s)/z
n



ψres,2 = 90(z, t(s))


∞∑
n=1

dn(s)/z
n

1 +
∞∑
n=1

en(s)/z
n


one finds (

2zm+1 +
m∑
n=0

zn(pn + bnx)

) ∞∑
n=1

cn(s)

zn
+ q0 = O

(
1

z

)
so thatc1 = c2 = · · · = cm = 0 and (49) follows.

Reciprocally, assume that (49) is satisfied, then we may write

9res= χres90(z, t(s)) χres :=
(
a(z, s) c(z, s)

d(z, s) e(z, s)

)
where

a(z, s) = 1 +O
(

1

z

)
c(z, s) = O

(
1

zm+1

)
d(z, s) = O

(
1

z

)
e(z, s) = 1 +O

(
1

z

)
.
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On the other hand,

Pres,1 =
(
p(z, s) q(z, s)

r(z, s) −p(z, s)
)
=
[(
zm+1 +

m∑
j=1

zj ∂xbj

)
χresσ3χ

−1
res

]
+

. (50)

By direct computation one finds

χresσ3χ
−1
res =

1 + 2
cd

ae − cd −2
ac

ae − cd
2

de

ae − cd −1− 2
cd

ae − cd

 =
(

1 +O
(
1/zm+2

)
O
(
1/zm+1

)
O(1/z) −1−O(1/zm+2

))

so that from (50) we findq(z, s) = q0(s) and then, as a consequence of theorem 1, we conclude
that (43) is satisfied. �

According to (49) the hidden hierarchies satisfying (43) are associated with submanifolds
t = t(s) such that

τ
(1)
W (t(s)) = 0.

Therefore, the flowz−σ3W(t(s)) lies outside the big cell. In order to analyse this feature let
us observe that provided (43) holds then

ψres,1 = 90(z, t(s))


1 +

∞∑
n=1

an(s)/z
n

∞∑
n=m+1

cn(s)/z
n


so that by introducing

φres,1 := 1

2cm+1

((
zm+1 +

m∑
n=1

bnxz
n

)
ψres,1− ∂xψres,1

)

= 90(z, t(s))

 O(1/z)

1 +
cm+2 + bmxcm+1

cm+1

1

z
+O(1/z2)


we may describez−σ3W as

spanC[z]{z−σ3ψres,1(z, s), z
−σ3φres,1(z, s), all admissibles}.

Let us now consider the imageW1(s) of z−σ3W(t(s)) in Gr(H) under the lexicographic
isomorphism, we have

W1(s) = spanC[z2]{g(z, s), g̃(z, s)}
where g and g̃ denote the corresponding images of90(z, t(s))

−1z−σ3ψres,1 and
90(z, t(s))

−1z−σ3φres,1, respectively. Two situations arise:

(a) m = 1. In this case

g = c2

z
+

1

z2
+O

(
1

z3

)
g̃ = z3 +

c3 + b1xc2

c2
z +O

(
1

z

)
so that

z4g − c2g̃ = z2 +O(z).
Hence, it follows easily that the setSW1(s) of orders of elements inW1 is given by

SW1(s) = {−1, 1, 2, 3, . . .}.
This means thatW1(s) is in the stratum61 of Gr(H).
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(b) m > 1. Now we have

g = 1

z2
+O

(
1

z3

)
g̃ = z3 +

c3 + b1xc2

c2
z +O

(
1

z

)
then it follows at once that

SW1(s) = {−2, 0, 2, 3, . . .}.
Therefore,W1(s) is in the stratum62 of Gr(H).

Appendix

We devote this appendix to check expressions (18), giving the relation between the AKNS tau-
functions and the corresponding wavefunction. In order to compute the determinants involved
in these expressions, we choose for the rays|H+〉 and|W〉 = |W(0)〉:

|H+〉 = e1 ∧ e2 ∧ ze1 ∧ ze2 ∧ z2e1 ∧ z2e2 ∧ · · ·
|W〉 = w0,1 ∧ w0,2 ∧ w1,1 ∧ w1,2 ∧ w2,1 ∧ w2,2 ∧ · · ·

(A1)

where{e1, e2} is the canonical basis inC2 andwn,i , i = 1, 2,n > 0 denotes the element inW
such that(wn,i)+ = znei (the existence and uniqueness of such an element derive from (11) and
(13)). On the other hand, from (11) it is clear thatχ1(z, 0) = w0,1(z) andχ2(z, 0) = w0,2(z).

By using the definition ofW(t) one obtains at once

|W(− 1
2[z]

)〉 = ((1− z
′

z

)−1

E11 +E22

)
|W〉

|W( 1
2[z]

)〉 = (E11 +

(
1− z

′

z

)−1

E22

)
|W〉

|(z′)−σ3W
(

1
2[z]

)〉 = ( 1

z′
E11 + z′

(
1− z

′

z

)−1

E22

)
|W〉

|(z′)σ3W
(− 1

2[z]
)〉 = (z′ (1− z

′

z

)−1

E11 +
1

z′
E22

)
|W〉

where as usual(E11)ij = δ1iδ1j , (E22)ij = δ2iδ2j (i, j = 1, 2). Now, for example, in order
to obtain〈H+|W(− 1

2[z])〉 we need to compute the scalar products determined by the basis
chosen in (A1):

〈z′rei |
((

1− z
′

z

)−1

E11 +E22

)
ws,j (z

′)〉 r, s > 0 i, j = 1, 2

which are given by

〈z′re1|
((

1− z
′

z

)−1

E11 +E22

)
ws,1(z

′)〉 = z−r (ws,1(z))1− zs−rθ(s > r + 1)

〈z′re1|
((

1− z
′

z

)−1

E11 +E22

)
ws,2(z

′)〉 = z−r (ws,2(z))1

〈z′re2|
((

1− z
′

z

)−1

E11 +E22

)
ws,1(z

′)〉 = 0

〈z′re2|
((

1− z
′

z

)−1

E11 +E22

)
ws,2(z

′)〉 = δrs

(A2)
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where

δrs =
{

1 if r = s
0 otherwise

and θ(s > r) =
{

1 if s > r
0 otherwise.

Thus, from (A2), we have

〈H+|W(− 1
2[z])〉

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(w0,1(z))1 (w0,2(z))1 (w1,1(z))1 − z (w1,2(z))1 (w2,1(z))1 − z2 (w2,2(z))1 · · ·
0 1 0 0 0 0 · · ·

z−1(w0,1(z))1 z−1(w0,2(z))1 z−1(w1,1(z))1 z−1(w1,2(z))1 z−1(w2,1(z))1 − z z−1(w2,2(z))1 · · ·
0 0 0 1 0 0 · · ·

z−2(w0,1(z))1 z−2(w0,2(z))1 z−2(w1,1(z))1 z−2(w1,2(z))1 z−2(w2,1(z))1 z−2(w2,2(z))1 · · ·
0 0 0 0 0 1 · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (w0,1(z))1 = (χ1(z, 0))1.

Then, by taking into account that〈H+|W〉 = 1, we obtain

τ
(0)
W = (χ1(z, 0))1.

Proceeding in the same way one easily finds the other formulae in equation (18).
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